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Summary 

A new NMR refinement method, FINGAR (Fit NMR using a Genetic AlgoRithm), has been devel- 
oped, which allows one to determine a weighted set of structures that best fits measured NMR-derived 
data. This method shows appreciable advantages over commonly used refinement methods. F INGAR 
generates an ensemble of conformations whose average reproduces the experimental NMR-derived 
restraints. In addition, a statistical importance weight is assigned to each of the conformations in the 
ensemble. As a result, one is not limited to simply presenting an envelope of sampled conformers. 
Instead, one can subsequently focus on a select few conformers of high weight. This is critical, because 
many structural analyses depend on using discrete conformations, not simply averages or ensembles. The 
genetic algorithm used by FINGAR allows one to simultaneously and reliably fit against many re- 
straints, and to generate solutions which include as many conformations with non-zero weights as are 
necessary to generate the best fit. An added benefit of F INGAR is that because the time-consuming step 
in this method needs only to be performed once, in the beginning of the first run, numerous FINGAR 
simulations can be performed rapidly. 

Introduction 

Multi-dimensional N M R  as a technique for determin- 
ing three-dimensional atomic structures is now well-estab- 
lished. Al though there are variations, the approach em- 
ployed most  frequently for N M R  structural studies con- 
sists of  three parts (Wiithrich, 1990): (i) collect the N M R  
data; (ii) convert the N M R / N O E  data into a set o f  inter- 
atomic distances and combine these with any measured 
vicinal 3J-coupling constants; (iii) use these distances and 
coupling constants to generate a 3D set of  atomic coor- 
dinates (refinement). In many ways, part three of  this 
procedure - converting NMR-der ived parameters into 
useful and reliable three-dimensional structures - remains 
most problematic. This is, in large part, because these 
parameters reflect not a single conformation,  but an 
ensemble o f  conformers. Both generating and representing 
this ensemble in a useful form has proven to be difficult 
(Pearlman, 1994a; Van Gunsteren et al., 1994). 

The most commonly  applied method for N M R  refine- 
ment ( 's tandard refinement') has been to use a sampling 
procedure - typically either distance geometry (DG) (Crip- 
pen and Havel, 1988) or molecular dynamics (MD) (Bur- 

kert and Allinger, 1982; Brunger and Karplus, 1991) or 
a combination of  these - to generate molecular confor- 
mations that are consistent with the set of  experimentally 
derived distances and J-coupling constants. In both ap- 
proaches, restraints are fulfilled in a static sense. That is, 
any particular single M D  or D G  simulation is an attempt 
to satisfy as well as possible the restraints with a single 
structure. MD-based N M R  refinement is performed (Clore 
et al., 1986; Nilges et al., 1988) by adding a set o f  restraint 
terms to the standard potential energy function that dic- 
tates the M D  trajectory: 

gtotal = Epotential + Z Ki(ri(t)- rNMRi) 2 (1) 
restraints 

where ri(t) is the instantaneous value o f  restraint r at any 
time ' t '  during the M D  simulation, r N M R  i is the N M R -  
derived target restraint value, and K i is a force constant. 
Frequently, a flat region is defined to account  for errors 
in the NMR-derived restraints. In this case, the restraint 
term is set to 0 for any value ri(t ) within a given tolerance 
of  rNMR~, and is quadratically restrained to rNMRi,  as 
in Eq. l, outside of  this range. 

During an M D  simulation, kinetic energy allows the 

0925-2738/$ 6.00 + 1.00 �9 1996 ESCOM Science Publishers B.V. 



50 

system to pass over local energy minima and (hopefully) 
find a reasonably low value of the Eto~a~ energy function. 
Most commonly, the temperature of the system is first 
raised, to facilitate passing over very large energy bar- 
riers, and then lowered to a very small value, to leach po- 
tential and kinetic energy out of the system and focus on 
a local energy minimum ('simulated annealing'). In many 
cases, the energy of the system is subsequently minimized. 
By this approach, a single conformation that (hopefully) 
satisfies the added restraints well is determined. This pro- 
cess is usually repeated many times, with different sets of 
initial randomly assigned velocities or different starting 
conformations, to produce an envelope of possible solu- 
tions to the problem. The simulation is rerun multiple 
times for two reasons: (i) even with high-temperature sim- 
ulated annealing, these searches frequently have difficulty 
finding the global minimum; repeating the simulation 
helps to guard against getting trapped in a high-energy 
local minimum; and (ii) there may be several conforma- 
tions that fulfill the restraints equally well (or give equiv- 
alently low values for the energy function), due to under- 
determination of the problem. In such a case, we want to 
generate a representative envelope of equivalent solutions. 

With DG, the process is similar: the simulation is run 
numerous times, with different random number seeds, in 
an attempt to determine structures which fulfill the NOE- 
derived restraints (given as ranges of acceptable distances). 
DG is extremely efficient at generating conformations 
that adhere to the specified restraints, but it does not take 
into account the potential energy, except in a very crude 
fashion. Consequently, the structures generated may sat- 
isfy the restraints well, but be of relatively high energy. 
For this reason, energy-based refinement (MD or minimi- 
zation) is frequently performed on the structures gener- 
ated in a DG run. Alternatively, the ensemble of DG 
structures can be analyzed directly to provide an idea of 
the variance in conformation that is defined principally 
by the restraints, covalent geometry, and simple steric re- 
pulsions. However, correlation between the distribution of 
conformers in the DG ensemble and the true conforma- 
tions in solution is often weak (Yang and Havel, 1993). 

Regardless of whether the DG structures are subse- 
quently energy refined or not, the end result from any 
standard MD or DG refinement run is a single conforma- 
tion which fulfills the restraint and energy (if any) cri- 
teria. The ensemble of structures produced from multiple 
runs - frequently presented superimposed as an envelope 
of the possible structure - does not change this fact. The 
envelope merely illustrates a series of conformations 
which, individually, satisfy the NMR data. 

The problem with this approach is that the distances 
and coupling constants one derives from an NMR experi- 
ment represent an averaging over the ensemble of con- 
formers that are sampled while the experiment is being 
run. For example, from a NOE experiment one derives 

not the interproton distance r, but rather <r 6> t/6, which 
represents the average over conformations sampled while 
data are being collected (Wagner and Wtithrich 1979; 
Tropp, 1980). As a result, it is incorrect to force any 
single conformation to satisfy the restraints. To do so 
risks generating an envelope of conformers that is too 
tight, and individual conformations that are high in ener- 
gy and distorted. These problems have afflicted many of 
the NMR-derived structures that have been reported 
(Torda et al., 1990; Pearlman and Kollman, 1991; Van 
Gunsteren et al., 1994). 

Significant improvement in the quality of the refined 
results can be achieved by incorporating ensemble averag- 
ing into the refinement procedure: instead of requiring 
that a single conformer satisfies the experimental restraint 
information, we require that the distances/torsions aver- 
aged over a set of conformations satisfy the restraints. 
For MD-based refinement, this leads to the method of 
'time-averaged refinement' (Torda et al., 1989,1993), in 
which one runs an MD simulation subject to restraints of 
the form: 

Edist .... = • Kr (<~D > 1/6__ rNMR)2 (2) 
measured NOEs  

Ej = ~ Kj (<JMD >-JNMR) 2 (3) 
measured J 

where _ - 6  ~ -1t6 <rMi~ is the reciprocal-weighted average of the 
distance over the MD trajectory, rNM R is the distance de- 
rived from the experimentally measured NOE data, <JMD> 
is the weighted average of the J-coupling constant over 
the MD trajectory, and JNMR is the experimental J-coupling 
value. The results are presented as both a time-averaged 
structure, and as an envelope of sampled conformations. 

Time-averaged refinement has been compared in detail 
to standard refinement (Torda et al., 1990; Pearlman and 
Kollman, 1991; Schmitz et al., 1993; Pearlman, 1994a,b; 
Gonzalez et al., 1995), and the results argue quite con- 
vincingly that the time-averaged protocol is superior to 
the traditional method. In particular, compared to stan- 
dard refinement, time-averaged refinement does a better 
job at reproducing the 'true' atomic fluctuations and 
averaged conformation, and the accuracy of the results is 
less sensitive to refinement variables like restraint weights 
or estimated restraint errors (Pearlman and Kollman, 
1991; Pearlman, 1994a,b). 

But despite these advantages to standard refinement, 
time-averaged refinement is not ideal. In particular, any 
restraint applied during the MD trajectory can affect the 
motions of the molecule being refined, generally in an 
unrealistic fashion (Scheek et al., 1995). For time-aver- 
aged refinement, this is a particular problem for the slower 
motions in the molecule (e.g. those with a characteristic 
time of greater than 10-20 ps). In addition, because the 
averaged values used in time-averaged refinement change 
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very slowly, and because time-averaged refinement is 
typically implemented using nonconservative forces, the 
atomic fluctuations predicted during such refinement tend 
to be too large, increasingly so with larger restraint force 
constants (Pearlman, 1994a; Nanzer et al., 1995). Time- 
averaged refinement also has problems reproducing ex- 
perimentally derived restraints that represent the average 
of two or more conformations separated by moderate or 
larger energy barriers (Pearlman and Kollman, 1991; 
Pearlman, 1994b; Fennen et al., 1995). Finally, while the 
results of time-averaged refinement are considerably bet- 
ter than those from standard refinement, the averaged 
structure and envelope of sampled conformers are not 
necessarily ideal for use in subsequent molecular modeling 
applications. Better would be a set of important, domi- 
nant, conformers. Although the simultaneous simulation 
of several molecular replicates has been proposed as a 
means to improve sampling about large energy barriers 
during time-averaged refinement (Fennen et al., 1995), 
this modification does not solve the other problems with 
the method, and introduces its own set of limitations. 

So, although time-averaged MD demonstrates many 
advantages relative to standard refinement, the need 
remains for a better method of NMR refinement. Ideal 
characteristics of such a method would include the ability 
to: (i) generate a solution from an ensemble of structures 
free of restraint bias; (ii) specify a set of distinct important 
conformers and weight their relative importance; (iii) in- 
corporate appropriately weighted averaging in calculating 
the internal values that are fit to the NMR-derived re- 
straints; (iv) derive a solution relatively quickly; and (v) in- 
corporate a robust algorithm for deriving the refined 
solution. 

In response to this need, we have developed the new 
method FINGAR (short for Fit  NMR data using a Gen- 
etic AlgoRithm). In this method, unrestrained and weakly 
restrained MD simulations are run to sample conforma- 
tional space. Snapshots are stored periodically during the 
MD trajectories. Subsequently, these snapshots are clus- 
tered to reduce the number of structures down to a smal- 
ler group of distinct 'basis structures'. Finally, a genetic 
algorithm (GA) is applied (Goldberg, 1989), where the 
relative weights of the basis structures are allowed to 
change in order to determine a weighted ensemble that 
balances reproducing the experimentally derived restraints 
with a low average potential energy. This method has 
been tested against data for several model systems, and it 
appears to be able to both generate refined models in 
excellent agreement with experiment, and avoid the draw- 
backs associated with time-averaged refinement. 

FINGAR is not the first program to attempt to fit 
NMR data to a discrete packet of structures weighted by 
their relative contributions (Kim and Prestegard, 1990; 
Bruschweiler et al., 1991; Landis and Allured, 1991; Niki- 
forovich et al., 1993; Yang and Havel, 1993; Landis et al., 

1995; Ulyanov et al., 1995). But many earlier attempts to 
do so have relied on local optimization procedures (Press 
et al., 1989) to determine an optimized fit for the multi- 
variate problem. Such procedures suffer from the local- 
minimum problem (the refined answer is a relative mini- 
mum close to the starting guess, rather than the absolute 
minimum), and this problem becomes more severe as the 
number of fitted variables increases. In an attempt to 
circumvent this problem, some studies have performed 
exhaustive searches on small numbers of fitted variables 
(Bruschweiler et al., 1991; Landis et al., 1995). That is, all 
combinations of a specified, small number of structures 
from the basis set are individually best fit to the NMR 
data, and the subset or coefficients yielding the best agree- 
ment with the NMR data are taken as the solution. The 
problem with this approach is the resulting combinatorial 
explosion (e.g. combinations of 100 basis structures taken 
4 at a time yields nearly 4 million sets; combinations of 
100 basis structures taken 5 at a time yields 75 million 
sets), which typically limits one to fits of less than struc- 
tures. Alternately, one can attempt to severely reduce the 
number of structures that must be fit using clustering 
methods (Kim and Prestegard, 1990; Landis and Allured, 
1991; Landis et al., 1995), thereby reducing the unknowns/ 
equation ratio to a point where direct methods like linear 
least squares (Lawson and Hanson, 1974) can be used to 
determine a solution directly. But this approach runs the 
real risk of omitting important structures before the fit- 
ting occurs. Another approach has been to increase the 
effective number of observables by performing refinement 
against raw 'pixelated' NMR data, rather than derived 
quantities such as integrated intensities or distances (Yang 
and Havel, 1993). This also results in an overdetermined 
problem that can be solved directly by linear least-squares 
methods, although one may encounter difficulties because 
many of the data used will reflect appreciable random 
and/or systematic errors. Of these earlier studies, only one 
(Ulyanov et al., 1995) utilized a global optimization pro- 
cedure. In this study, quadratic programming was used in 
an attempt to minimize a relaxation-rate-based residual. 
Of the methods published, this one seems the most prom- 
ising for fitting integrated NOE intensities, NOE-derived 
distances or J-coupling data to realistic numbers of poten- 
tial structures. In general, local optimization methods are 
suboptimal or impractical if the best fit requires a moder- 
ate number of non-zero-weighted basis structures. As will 
be shown, the power of the GA allows one to reliably fit 
dozens or even hundreds of structural weights simulta- 
neously, provided one has enough experimental data to 
define a fit. 

Finally, we note that the FINGAR method, wherein 
weights are assigned to members of an ensemble of static 
structures, differs significantly from another approach 
recently described for determining the relative populations 
of conformers (Bonvin and Brunger, 1995; Kemmink and 
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Scheek, 1995). In this alternate approach, MD sampling 
(or annealing) is run in parallel on several pre-chosen (and 
presumably noninterconverting) conformations of the 
same molecule. Weights are assigned to the various con- 
formers, and the averaged values of restrained variables 
over the weighted ensemble of conformations is used in 
the penalty functions. Separate MD simulations are run 
with a variety of different weight distributions in order to 
determine the optimal set, and cross-validation (Brunger 
et al., 1993) can be used to avoid overfitting the problem. 
However, this method can be quite time-consuming, since 
each change in the number of members of the ensemble 
or their weighting requires another MD simulation. Be- 
cause of this, the number of conformations that can prac- 
tically be fit is relatively small. In addition, it was recently 
shown that NOE distances may not contain enough infor- 
mation to reliably assess the relative weights of the con- 
formations when refinement is performed in this manner 
(Bonvin and Brunger, 1996). This is due to the fact that 
the conformations can change as the relative weights 
change. In contrast, because the basis-set structures do not 
change, it is expected that F I N G A R  will not suffer this 
drawback, provided the basis set is reasonably defined 
and there are sufficient restraint data to define the fit. 

Methods 

To run F INGAR,  one must first obtain a set of experi- 
mental distance/J-coupling restraints. Next, a set of struc- 
tures which represent the 'basis set' for the calculation 
must be derived. The basis set is a set of structures which 
should include representatives of  all the important confor- 
mations that contributed to the experimental ensemble 
from which the restraints were derived. F I N G A R  will 
ultimately attach weights to all the structures in the basis 
set, and weights of zero can be assigned, so it is not a 
problem if structures with negligible contributions to the 
experimental ensemble are also included in the basis set. 

The capabilities of  F I N G A R  have been investigated 
using two types of  test simulations. In the first type, 
refinement is performed against a set of  restraints which 
are generated from a randomly assigned set of weights 
and a fabricated set of  basis sets. Because the restraints 
are derived entirely from the weights and basis sets, the 
system is self-consistent, and the restraints can be perfect- 
ly fit if we correctly reproduce the set of weights used to 
generate them. We call this the 'exact test'. In the second 
type of test simulation, a set of MD-generated basis-set 
structures are fit to a set of restraints derived from an un- 
restrained MD trajectory on the same molecule. In this 
type of simulation, we can only approximate the solution, 
since our restraint set was not derived directly from the 
basis set. This test more directly approximates how 
F I N G A R  will be used for refinement of actual N M R  
data. We call this the 'model test'. 

For the 'exact test', we first generated a series of basis 
sets. A basis set is defined by the values of the restrained 
variables for that set. Here, values were randomly assigned 
from the interval [2.5,5.5] A to represent restrained dis- 
tances. Between 50 and 1000 restraint distances were 
specified for each basis set, depending on the run. A total 
of between 50 and 1000 basis sets were defined, also 
depending on the run. A weight was then assigned to 
each of the basis sets, choosing random weights on the 
interval [0,1] for approximately 90-95% of the structures, 
and [0,10] for the remaining 5-10%. The weights were 
then normalized to total 1.0. In this way, we approxi- 
mated a real situation, where the ensemble will be domi- 
nated by a subset of the structures in the basis set. Final- 
ly, potential energies were assigned to each basis set, 
based on the Boltzmann factor that would result in the 
assigned weight. In principle, if F I N G A R  is successful, it 
will be able to exactly reproduce the weight vector used 
to generate the data. 

For the 'model tests', two systems were examined: the 
126-atom macrocycle FK506 (Schreiber, 1991) with 66 
restraints representing the 66 NOE intra-FK506 distances 
that were determined experimentally for an FK506-FKBP 
complex (Lepre et al., 1992); and the nucleoside (ribo)- 
adenosine (Saenger, 1984), with 5 J-coupling restraints 
representing the five torsion angles whose J-coupling 
values can, in principle, be measured. These two systems 
were chosen because, for each, both standard and time- 
averaged refinement procedures have previously been 
applied and evaluated in detail (Pearlman, 1994a,b), and 
because they test two different facets of  the refinement. 
The first one tests the ability of the method to refine 
against a set of distance restraints. The second one tests 
the ability of the method to refine against torsional (J- 
coupling) restraints, in a case where the J-coupling values 
represent the average of two distinct rotational confor- 
mers. 

Each 'model test' requires that a basis set of  confor- 
mations be generated for the system of interest. The 
method chosen for generating the basis set was to run 
MD simulations on the molecule to be refined, period- 
ically storing a snapshot of the molecule. While this 
could be done in any number of  ways, and in the general 
case one would probably wish to run several MD simula- 
tions starting from different starting configurations, for 
the purposes of the studies here it was sufficient to run 
starting from a single known conformation. Structures 
generated during MD at 300 K are preferable to those 
from minimization or another static optimization pro- 
cedure, because they include the small-but-sometimes- 
significant internal distortions characteristic of a molecule 
at room temperature. All MD calculations were run using 
AMBER/SANDER,  v. 4.1 (Pearlman et al., 1995). All 
MD simulations were run at 300 K, in vacuo, using a 1-fs 
timestep. Force-field parameters were as described previ- 
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ously (Pearlman, 1994a,b). In each case, two simulations 
were run. The first one was standard MD with no re- 
straints. The second one was identical to the first, except 
that time-averaged restraints were imposed with a small 
force constant of  1 kcal/mol/~2 and an exponential damp- 
ing factor z = 20 ps (Torda et al., 1989). In general, this 
second run will be desirable, because entirely free MD 
may not fully sample the conformational space implied by 
the experimental restraints. A run using low-weight time- 
averaged restraints will help ensure that certain regions of 
conformational space in the vicinity of  those required to 
satisfy the restraints will be sampled. Note that because 
we always include structures from an unrestrained run, 
and because inclusion of restraints always forces the po- 
tential energy to increase, at least slightly, relative to the 
same conformation without restraints, conformations 
from the restrained trajectory are only used when they are 
necessary to better fit the N M R  data and also do not 
appear in the unrestrained run. In principle, one could 
assure good sampling by running several trajectories 
starting from a variety of  structures generated using an- 
other form of conformational sampling, such as D G  or 
torsional driving. In this case, one might be able to omit 
the time-averaged simulation altogether. A prerequisite 
for success with only unrestrained trajectories is that no 
conformers important for the N M R  fit correspond to 
calculated potential energies which are so high that these 
conformers would not be sampled during any standard 
temperature MD run. A critical advantage to F I N G A R  
is that it is not necessary that we sample all important 
conformers in their appropriate ratios during the sam- 
pling procedures. All that is necessary is that we sample 
each of them at least once. The appropriate weights will 
be assigned later during the fitting phase. For the FK506 
case, both the unrestrained and restrained simulations 
were run for 1.0 ns, archiving the coordinates every 0.6 
ps. For the adenosine case, the unrestrained trajectory 
was run for 1.5 ns, archiving every 0.5 ps, while the re- 
strained trajectory was run for 0.5 ns, archiving every 0.5 
ps. 

The 3333-4000 snapshot structures archived for each 
of the systems were then clustered to provide a manage- 
able set of  basis structures. A divisive hierarchical cluster- 
ing procedure was used (Massart and Kaufman, 1983), in 
which each existing cluster (initially the entire population 
is considered one cluster) is split into two until the maxi- 
mum distance between any two members of any cluster 
(the 'diameter') is less than a specified threshold. The 
similarity index used in the clustering was the 'distance 
matrix error', Dab , which is given as (Havel, 1990): 

~1/2 
2 a b 2 

Dab = N ( ] ~ - I )  ~ ( d i ) - d i j )  / (4) 

where N is the number of heavy atoms in the structure, 

the sum is over all pairs of heavy atoms, dij is the distance 
between atoms i and j, and a and b are the two confor- 
mations being compared. Results from the 'exact test' (see 
below) indicated that, for a set of 50 restraints - typical 
of the number determined for a small molecule - FIN- 
GAR could reasonably determine proper weights for a 
basis set of at least 100 structures. A basis set of 100 
structures also appeared sufficient to provide a reasonably 
thorough sampling of the conformational spaces of the 
molecules examined herein. Thus, for clustering, the maxi- 
mum cluster diameter was set in order to generate ap- 
proximately 100 clusters. For each cluster, the member 
with the lowest potential energy was chosen as the repre- 
sentative of  that cluster. For each cluster representative, 
the values of  all the restrained internal coordinates and 
the potential energy (determined using the same force 
field used to perform the MD) were calculated and stored 
to a file, INTVAL. 

For the 'model-test' F I N G A R  runs, input consisted of 
the INTVAL file, a file consisting of the restraint defini- 
tions, and a file which contains various run control op- 
tions. (For 'exact-test' runs, only the file of run control 
options is required.) F I N G A R  uses a genetic algorithm to 
optimize the following fitness function: 

Eto t = Kpo t <Epot> + Kbond Ebond + K s Ej + KoE E~E (5) 

Each term in this expression represents the weighted 
ensemble average over the basis-set structures. The GA 
optimization changes the relative weights of the structures 
in the basis set, w(i). The w(i) values are normalized to 
total 1.0 before the fitness function is evaluated: 

<Epot> = ]~ w(i) Evot(i ) (6) 
NBASIS 

Ebond = ~ (<r(n)>-rNMR(n)) 2 (7) 
NREST 

Ej = ]~ (<J(n)>- JyMR(n)): (8) 
NREST 

EoE = (cy(Epot) - G(Evot.0)) 2 (9) 

where Epot(i ) is the potential energy of basis set i, as cal- 
culated by AMBER/SANDER,  NBASIS is the number of  
basis sets, NREST is the number of  NMR-defined re- 
straints, and <r(n)> is the weighted average value of re- 
straint n over all basis sets i: 

<r(n)> = ( ]~ w(i)r(i,n) Y) 1/N (10) 
NBASIS 

where r(i,n) is the value of distance restraint n for basis 
set i, and N is typically 6. The reciprocal weighting re- 
flects the relationship between the measured NOE-derived 
distance rNMR(n ) and the experimental ensemble of dis- 
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tances contributing to rNMR(n ) (Wagner and Wfithrich, 
1979; Tropp, 1980). <J(n)> is the weighted average value 
of J-coupling restraint n over all basis sets i: 

<J(n)> = ]~ w(i) J(i,n) (11) 
NBASIS 

where J(i,n) is the value of the nth restrained J for basis 
set i. J(i,n) can be related to the underlying torsion angle 

through the Karplus relationship (Karplus, 1959): 

J = Acos2(~)  + B cos ( ' [ )+  C (12) 

For adenosine, A = 10.2, B =-0 .8  and C = 0.0 (Davies, 
1978). Finally, the EoE term is included to ensure that the 
standard deviation in the value of Epot, (y(Epot) , is reason- 
able. Typically, a value centered on the range of 2-4 RT 
is used (Atkins, 1990). FINGAR optionally allows one to 
specify that EoE is 0 for a range (Y(Epot.0)-F ~(Y(Epot,0) and 
non-zero outside that range. 

Unless noted otherwise, for the simulations reported 
here, Kpo t = 1.0, Kbond = 200.0, Kj = 20.0, Koz = 1.0 and  

(Y(Epot.0) is set to 3.5 + 1.5 RT, where R is the gas constant 
and T is 300 K. For the 'exact-test' simulations, (y(Epot.0) 
is set to the actual value, as determined from the true 
weight vector and assigned potential energies. 

For the GA (Goldberg, 1989), a 'population' of IPOP 
solutions is randomly generated and then allowed to 
change in search of an optimal value of the fitness func- 
tion. Each member of the population is a 'weight vector', 
of length NBASIS, consisting of a set of weights {w(i), 
i = 1, NBASIS}. Each of the weights w(i) for a particular 
member can be termed a 'codon'. The weight vector for 
each member of the population can be different, and the 
member of the population with the weight vector that 
results in the lowest value of the fitness function Eto t (Eq. 
5) is the best solution to the problem. Optimization oc- 
curs as changes ('cross-over', 'mutation' and 'replication') 
are systematically applied to the population. Each cycle 
of these procedures is termed a 'generation'. 

Because the values of Epot(i), r(i) and J(i) are all pre- 
calculated prior to starting FINGAR, the fitness evalua- 
tions are very fast. This means it is practical to run the 
GA with a relatively large population and number of 
generations. The simulations reported here were run with 
a population (IPOP) of 1000 members for 500 genera- 
tions. Each generation consists of the following: (i) IPOP 
cross-overs are performed on the parent population P0- A 
cross-over consists of exchanging the contiguous series of 
weight-vector elements m 1 ---) m 2 in population member i 
with elements m~ ~ m2 in population member j. Members 
i and j, and starting and ending codons ml and m2 are 
chosen randomly from the parent population for each 
cross-over. This creates a daughter population P~; (ii) 
mutate a specified fraction (here 0.005) of the codons of 
population P1. Mutated codons are chosen randomly 

from the entire population. A mutation consists of chang- 
ing the weight of the chosen codon. The change is chosen 
according to the function (-1) TM ( 1 -  e~C/RTmut), where 8C is 
a real randomly chosen on [0,1], N is an integer randomly 
chosen on [1,2], R is the gas constant, and Tmu t is 300 K. 
If a change would result in w(i) < 0, w(i) is set to 0.0. This 
creates daughter populations P2; (iii) the weights for each 
member of the population are normalized so that their 
sum is equal to 1.0; (iv) the fitness of each member of the 
population P2 is evaluated; (v) the next generation popu- 
lation is formed. This consists of the single most fit mem- 
ber from the last generation plus the most fit members of 
the current population. Members of P2 are replicated for 
the next generation on the basis of their fitness. The 
number of replicates of each member is given by: 

NREP(i) = ( IPOP-  1)e-Et~ / Ze-Et~ (13) 
IPOP 

subject to the condition that no more than 80% of the 
next generation population can be replicates of any single 
member of P2 and with Tre p set to 300 K. If after replicat- 
ing according to Eq. 12 the number of members of the 
next generation is not equal to IPOP (either due to round- 
off or due to the maximum-replication condition), the 
population is brought to IPOP members by adding or 
removing randomly chosen members of P2- 

All weights are forced to be integral multiples of 0.001. 
This granularity is imposed at all stages, including renor- 
malization. 

After the GA is completed, the weight vector that 
gives the lowest value Eto ~ for the fitness function can be 
used to perform several types of structural analysis. In 
addition to direct examination of the basis-set structures 
with the highest weights, one can generate a weighted 
average conformation. Since the basis-set structures used 
here were determined from an in vacuo MD simulation, 
we must first superimpose the basis sets on a common 
structure (the basis set with the highest weight) to place 
them in a common reference frame. We can then perform 
simple weighted coordinate averaging to produce an aver- 
aged conformation. Rms fluctuations of the atomic posi- 
tions about this averaged conformation can subsequently 
be determined, again weighted according to the best result 
from the GA. 

Results 

The 'exact test' 
Before proceeding to test FINGAR against MD-derived 

model data (restraints and basis sets), we chose to charac- 
terize the program's ability to fit the synthesized 'exact- 
test' data. The advantage of these test data is that because 
the restraints are generated directly from a weighted sum 
of the basis sets, we know the exact solution (the weight 
vector) and can directly compare any results to it. By 
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Fig. 1. (a) Lower spectrum: the true weight vector for the 50-basis-set/50-restraint 'exact-fit' simulation. Upper spectrum: the difference in weight 
between the true vector and the fitted vector as a function of basis set for this simulation (fit-true). Results are for the most-fit member of a 
population of 1000 members after 500 generations. The restraint set consisted of distances randomly assigned on the interval [2.5,5.5] A. (b) The 
true and (fit-true) curves for the 1000-basis-set/1000-restraint 'exact-fit' simulation. (c) The true and (fit-true) curves for the 1000-basis-set/50- 
restraint 'exact-fit' simulation. 

contrast, for the 'model-test' data we do not have, a pri- 
ori, the 'correct' weight vector for comparison, and the re- 
sults will reflect the ability (or lack thereof) of the chosen 
basis set of conformations to appropriately represent the 
ensemble from which the restraints were generated. 

FINGAR 'exact-test' runs were performed in pairs. 
For each pair, the simulations differed in the number of 
synthesized distance restraints used: the first one used 50 
distance restraints, while the second one used a number 
of distance restraints equal to the number of basis sets. 
Each pair of runs used a different number of basis sets: 
50, 100, 200, 500 or 1000. The simulations were performed 
in pairs to test two things: firstly, how does the fit de- 
grade as the number of fit variables (basis sets) becomes 
much larger than the number of experimental data (re- 
straints), and secondly, is the GA able to generate a good 
fit even for large numbers of fit variables when the num- 
ber of experimental data are equal to the basis set (there- 

by defining a unique solution). The distance restraints 
used in each fit were generated as the <r-6>-~/6-weighted 
average of the distances in the basis sets. 

Results for these simulations are presented in Fig. 1 
and Table 1. Figure la compares the target (true) weight 
vector with the difference between the true and fit vectors 
for the run using 50 basis sets and 50 restraints. In Fig. 
lb, the fit for the run using 1000 basis sets and 1000 
restraints is shown. Figure lc presents the fit for the 
severely undetermined case of 1000 basis sets and only 50 
restraints. It is apparent from Figs. la and lb and Table 
1 that in all cases, even where 1000 weights must be fit, 
FINGAR does an excellent job reproducing the true 
weight vector when the number of restraints equals the 
number of basis sets. The maximum and rms weight 
differences for these fits (Table 1) are uniformly low. 
These results reflect the power of GA as a search tech- 
nique for this problem. 
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TABLE 1 
RESULTS OF 'EXACT-TEST' FINGAR SIMULATIONS 

Basis sets Restraints FINGAR (fit-true) 

Rms Maximum 

50 50 0.0032 0.0090 
100 50 0.0041 0.0160 
100 100 0.0017 0.0060 
200 50 0.0034 0.0170 
200 200 0.0011 0.0060 
500 50 0.0050 0.0410 
500 500 0.0006 0.0020 

1000 50 0.0032 0.0290 
1000 1000 0.0004 0.0020 

All simulations were run with a population of 1000 members for 500 
generations. The results listed are for the most-fit member of each 
final population. 

By comparison, the ability of F I N G A R  to generate a 
fit in accord with the true vector degrades significantly 
with the number of  basis sets when the experimental 
restraints do not fully determine the answer. The fit to 50 
restraints is excellent for a set of  50 basis sets, as expected. 
The fit using 100 basis sets and 50 restraints (Table 1) is 
also good, though not as good as with the overdetermined 
problem. The maximum weight difference between the fit 
and actual weight vectors is 0.0160, as compared to 0.0090 
for the 50-basis-set/50-restraint-set. The maximum weight 
difference continues to increase as the number of basis 
sets increases and the number of restraints remains at 50. 
These results merely reflect the fact that when the prob- 
lem is undetermined, numerous solutions can be obtained 
that meet the provided restraint criteria well but differ 
from the 'true' set. If  we run any of these undetermined 
simulations with a different random number seed, we 
obtain a different answer, but typically one which is a 
similarly good (or poor) approximation to the true sol- 
ution. Note that the inability to determine the true fit for 
the underdetermined problem does not reflect a weakness 
in the GA method. The underdetermined runs result in 
rms distance-restraint violations that are the same as their 
fully determined counterparts (between 0.00 and 0.01 A). 
However, without sufficient distance restraints, the chances 
of determining the solution that minimizes both distance- 
restraint violations and agreement with the true vector are 
small - increasingly so as the problem becomes more 
undetermined. 

In any case, these results provide evidence that FIN- 
GAR is capable of generating a reliable fit of around 100 
basis sets to a set of  50 independent NMR-derived re- 
straints. As more basis sets are fit without increasing the 
amount of NMR-derived restraint information, under- 
termination of the solution becomes increasingly signifi- 
cant. It should be noted that undetermination is not 
necessarily a problem when fitting N M R  data; it does 
mean that in such a case the derived solution may not be 

unique or may be determined in significant part by the 
force field being used. 

The results indicate that the 500 generations being 
performed should be more than enough to produce a 
good optimized solution. Figure 2 presents the rms differ- 
ence between the refined and true basis weight vectors as 
a function of generation number. As is typical of GAs, 
the fitness improves quickly in the early generations, but 
undergoes a much more gradual improvement in later 
stages. 

FK506 'model-test' refinement 
Having satisfied ourselves that F I N G A R  works as ex- 

pected, we proceeded to apply the program to two model 
test systems that have been examined in detail before. The 
first of these is the 126-atom macrocycle FK506. Previ- 
ously, time-averaged refinement was shown to generate a 
more reliable and realistic representation of the true mo- 
lecular conformation and flexibility of this molecule than 
is possible using standard refinement (Pearlman, 1994a). 
However, even the time-averaged results suffered some 
disadvantages, particularly in that the motions of  many 
parts of  the molecule are overestimated with this tech- 
nique. In addition, the time-averaged results (as well as 
those from standard refinement) should be viewed in 
terms of a molecular average and envelope of sampled 
structures, rather than in terms of the individual snap- 
shots that are more easily usable in subsequent molecular 
studies. 

The previous study was carried out by performing 
unrestrained MD on FK506 to generate a set of <r-3> -l/3- 

weighted distances between all proton pairs for which 
resonances were observed in an experimental N M R  study 
of FK506 complexed to binding protein FKBP. These 
distances constituted the 'experimental' restraints used to 
then refine FK506. A comparison of the results from the 

CO 

I 
o 

L 

,.Q 

30.0  

20.0 

10.0 

0.0 

200 400 

g e n e r a t i o n  

Fig. 2. Rms difference between the true and most-fit weight vectors as 
a function of generation. Thin line: the 50-basis-set/50-restraint simu- 
lation in Fig. 1; thick line: the 200-basis-set/200-restraint simulation. 
These curves are representative of all the simulations listed in Table 1. 
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refinement to the unres t ra ined t ra jectory allow an evalu- 

a t ion o f  the refinement method  unbiased  by the force 

field (since bo th  the 'exper imental '  restraint  set and the 
refinement use the same force field). And,  because the 
restraints are generated from a model  calculat ion,  we 

know with total  accuracy what  the correct  refined mean 

structure and associated mot ion  about  that  mean should 
be. In the earl ier  study, <r 3>-m averaging, rather  than 
<r-6> -t/e, was used to be consistent  with a suggestion that  

this is the appropr ia te  weighted averaging to per form for 
M D  when the s imulat ion is short  relative to the correla-  
t ion time for angular  fluctuations (Kessler et al., 1988). 

The same set o f  MD-der ived  restraints was used in the 
F I N G A R  refinement of  FK506.  For  consistency <r-3> -1/3 

averaging was used for the F I N G A R  refinement. N o  flat- 

well regions were associated with the restraints. The re- 

sults obta ined  are directly comparable  to the unrestrained 

t ra jectory that  was originally used to generate the re- 
straints. Using a max imum cluster d iameter  of  0.93, 3333 
M D  trajectory snapshots  (see above) were reduced to 104 

clusters. The 104 structures with the lowest potent ia l  
energy in their  respective cluster were taken as the basis 

set for these F I N G A R  runs. A popula t ion  of  1000 mem- 
bers was run for 500 generations. At  the end o f  the simu- 

lation, average and rms N M R  distance restraint  viola- 

tions of  0.05 and 0.07 A, respectively, had  been obtained,  
with an averaged potent ia l  energy o f  38.20 kcal/mol.  
These measures are considerably more  favorable than the 

corresponding measures for s tandard  M D  refinement 
(0.19/0.36 ,/k and 61.20 kcal/mol,  respectively) with the 

Fig. 3. (Upper pictures) A comparison of the FINGAR fit and true-averaged FK506 structures. The true-averaged FK506 structure is shown in 
heavy lines. Carbon atoms are green, oxygen atoms are white, nitrogen is blue. Hydrogens are not shown. The FINGAR-generated structure is 
shown in thin red lines. The FINGAR structure is calculated from the weighted average of the basis-set structures for the most-fit member of the 
population after a FINGAR run. (Lower pictures) The ensemble of basis-set structures with non-zero weights that contributed to the best solution. 
The eight structures with weights > 5% are shown in magenta, while the remaining nine structures are shown in cyan. The true-averaged FK506 
structure is shown in heavy white lines. 
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same set of  restraints. The restraint violations are the 
same as those obtained from time-averaged refinement, 
and with a substantially lower average potential energy 
(Table 2). A plot of  Eto t v e r s u s  the generation of  the best 
solution in the generation (not shown) is essentially flat 
past 200-250 generations, indicating the best solution has 
easily converged by generation 500. The final solution 
consists of  17 basis structures with non-zero weights. Of  
these, only eight contribute more than 5% to the solution. 
The ensemble of  basis-set structures with non-zero weights 
is shown in Fig. 3, with those structures contributing 
more than 5% to the solution in magenta, and the remain- 
der in cyan. It can be seen that this ensemble widely 
samples the FK506 conformational  envelope, especially in 
the allyl (around C39) and cyclohexyl 'Northwest  Corner '  
(around C32) regions. 

Both the weighted mean structure and the weighted 
rms atomic fluctuations about the mean position can be 
calculated for the most-fit member o f  the population after 
running F I N G A R .  These can be compared directly with 
the corresponding properties for the unrestrained M D  
trajectory from which the restraints were originally de- 
rived (the 'experimental data'). These comparisons are 
presented in Figs. 3 and 4, respectively. As can be seen, 
the mean structure is nearly indistinguishable from the 
experimental one, and the rms fluctuations curve is also 
in excellent accord with the experimental data. In addi- 
tion, in Fig. 4 we have plotted the rms fluctuations that 
arise when only the eight structures contributing > 5% to 
the average are included (dashed line). While this curve is 
also in acceptable agreement with experiment, the low- 
weight structures do perceptibly improve agreement. There 
are two places in the curves, atoms 99 and 118, where 
there is notable disagreement between the F INGAR-re -  
fined and experimental curves. These correspond to the 
carbon atoms C40 and C43, both part  o f  pendant  methyl 

TABLE 2 
REFINEMENT OF FK506 

Method Restraint violation <Epot> 

Rms Average 

FINGAR ~ 0.07 0.05 38.20 
Standard MD b 0.36 0.19 61.20 
Time-averaged MD b 0.07 0.05 54.99 

Violations are in/~. Energies are in kcal/mol. All simulations used the 
same set of 66 restraints distances derived from an unrestrained MD 
run. 

The FINGAR simulation was run with a population of 1000 mem- 
bers for 500 generations. The results listed are for the most-fit mem- 
ber of the final population. <r-3> -~3 distance averaging was used to 
be consistent with the averaging used to generate the target 
restraints. 

b The standard and time-averaged MD simulations were run for 1 ns 
with 5-kcal/mol restraint weights. For the time-averaged run, <r-3> ~/3 
averaging was employed with an exponential damping-factor con- 
stant of "~ = 10 ps. 
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Fig. 4. Rms fluctuations (./~) about mean atomic position for heavy 
atoms of FK506. The heavy solid-line curve represents the 'true' fluc- 
tuations, taken from the unrestrained MD trajectory from which the 
NMR restraints were derived. The thin solid line represents the fluctu- 
ations calculated from the weighted average of the 17 structures in the 
basis set with non-zero weights after a FINGAR run. The dashed line 
represents the fluctuations calculated from the weighted average of the 
eight structures in the basis set with weights > 0.05 after a FINGAR 
run. The FINGAR run results are for the most fit member of the 
population. 

groups of  FK506. That  the rms fluctuation fit for F IN-  
G A R  is much improved relative to either standard or 
time-averaged refinement is demonstrated in Fig. 5. There, 
the rms fluctuation curves for standard (short dashed 
line), time-averaged (long dashed line), and F I N G A R  
(thin solid line) refinements are compared to the 'experi- 
mental '  curve (thick solid line). In contrast to the FIN-  
G A R  curve, the standard refinement results severely 
underestimate atomic mobility, while the time-averaged 
results overestimate it. The atomic mobility predicted by 
F I N G A R  is very close to the experimental curve. Clearly, 
F I N G A R  does the best job at reproducing the true rms 
fluctuations. 

Adenosine 'model-test' refinement 
A more challenging problem for both standard and 

time-averaged refinement has been refining against J- 
coupling data for adenosine (Pearlman, 1994b). As with 
FK506, 'experimental '  data (here, J-coupling constants) 
were generated from an unrestrained M D  simulation. 
Results from refinement using these J-coupling restraints 
can then be compared with the unrestrained trajectory. 
Five J-coupling restraints were employed, corresponding 
to the five torsions about which J-coupling information 
could, in principle, be collected experimentally for this 

molecu le :  JHI'H2'I, JH2'IH3', Jrt3'H4', JH4'HS'I, and JH4'H5'2 (Van de 
Ven and Hilbers, 1988; Kim et al., 1992). These five J- 
coupling constants are related to two conformational  
variables: the phase angle of  pseudorotation, P (which 
describes the conformat ion of  the furanose sugar moi- 
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Fig. 5. Rms fluctuations (,~) about mean atomic position for heavy 
atoms of FK506. Here, the rms fluctuations calculated using standard 
MD refinement (short dashed line), time-averaged MD refinement 
(long dashed line), and FINGAR refinement (thin solid line) are com- 
pared with the true fluctuations from the unrestrained MD trajectory 
(heavy solid line). The MD-derived rms fluctuations are from simula- 
tions using modest restraint weights (Kres t ra in t  = 5.0 kcal/mol) and the 
same restraint target values as those used for the FINGAR run. 

ety), and the torsion angle ~, (C3'-C4'-C5'-O5')  (Pearlman,  
1994b). 

The reason this refinement presents a more  difficult 
challenge for both  MD-based  refinement methods,  is that  
during the unrestrained M D  trajectory leading to the J- 
restraints, the T-torsion, f rom which two of  the J-coupling 
restraints are determined, undergoes several large confor- 
mational  transitions between t (~180 ~ and g§ (~ 60 ~ (Fig. 
6). The  related averaged J-coupling restraints reflect this. 
Note,  however, that the period for the transition is rather 
long. The periodicity is lost when the averaging is per- 
formed, and does not appear  explicitly or implicitly in the 
restraints themselves. Therefore, when these restraints are 
applied during MD-based  t ime-averaged refinement, the 
conformat ion  undergoes relatively rapid oscillations in 
order to a t tempt  to reproduce the experimentally derived 
values. For two disparate conformat ions  such as t and g+, 
this can lead to artificial distortions in the molecular  
structure and severe errors in the calculated rms atomic 
motions.  In fact, this is what has been observed for this 
system. While the time-averaged refinement values are still 
significantly better than those from standard refinement, 
they are far from ideal (Table 3). 

Such a situation is well suited to the F I N G A R  ap- 
proach. This is because the time domain  plays no part  in 
F I N G A R  refinement. The potential  energy barrier be- 
tween two low-energy conformers  - and the related rate 
of  interconversion between them - is irrelevant. F I N G A R  
merely fits the relative weights of  the two low-energy 
conformations.  As long as the basis set adequately sam- 
ples the low-energy conformat ions  available to the t o o l -  
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ecule, it makes no difference what the barriers to, or rates 
of, interconversion among  those conformers  are. 

The J-coupling restraint approach was previously char- 
acterized in detail for MD-based  refinement of  the adeno- 
sine system (Pearlman, 1994b). The same set of  five aver- 
aged J-coupling restraints used in the previous study were 
applied in our  F I N G A R  refinement of  adenosine; 4000 
M D  trajectory snapshots were reduced to 106 clusters 
using a max imum cluster diameter  o f  0.385. The lowest 
potential  energy structure in each cluster was placed in 
the basis set. F I N G A R  refinement was run on a popula-  
tion of  1000 members  for 500 generations. This refine- 
ment  resulted in 33 basis structures with non-zero weights. 
However, o f  these structures only seven contributed by 
more  than 5%, and together these seven structures ac- 
count  for 65% of  the total ensemble. There are 18 struc- 
tures f rom the ensemble with weights of  > 1%, and these 
contribute 95% of  the total. The weighted averaged FIN-  
GER-de te rmined  adenosine structure is nearly identical to 
the true average, as can be seen in Fig. 7. Also shown in 
Fig. 7 is the ensemble of  basis set structures with non- 
zero weights contributing to the solution. Those basis sets 
with weights > 5% are shown in magenta,  and the remain- 
ing basis sets are shown in cyan. Appreciable sampling of  
the sugar conformat ion and 3'-torsion can be observed 
f rom this ensemble. A number  of  conformat ions  are also 
seen where the adenine base adopts  an alternate confor- 
mat ion about  the glycosyl (CI ' -N9)  bond. All of  these are 
among  the structures contributing < 1% to the ensemble. 

The results from the F I N G A R  refinement of  adenosine 
are presented in tabular form in Table 3. The five J-coup- 
ling restraint values determine the values of  the confor- 
mat ion of  the furanose sugar, represented numerically by 
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Fig. 6. Trajectory of the 7(C3'-C4'-C5'-O5') torsion angle (in degrees) 
in adenosine during the unrestrained MD trajectory that was used to 
generate the J-coupling restraints. The z-value is related to two of 
the J-coupling restraints through the following Karplus relationships: 
( i )  J H 4 ' H 5 ' I  = 10.2 C O S  2 ( 7 - -  120~ - 0.8 cos (T- 120~ and (ii) JH4'HS*2 = 
10.2 COS 2 ('t') -- 0.8 COS (~'). 
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Fig. 7. (Upper pictures) A comparison of the FINGAR fit and true-averaged adenosine structures. The true-averaged adenosine structure is shown 
in heavy lines. Carbon atoms are green, oxygen atoms are white, nitrogen is blue. Hydrogens are not shown. The FINGAR-generated structure 
is shown in thin red lines. The FINGAR structure is calculated from the weighted average of the basis-set structures for the most-fit member of 
the population after a FINGAR run. (Lower pictures) The ensemble of basis-set structures with non-zero weights that contributed to the best 
solution. The seven structures with weights > 5% are shown in magenta, while the remaining 26 structures are shown in cyan. The true-averaged 
adenosine structure is shown in heavy white lines. 

the phase angle of  pseudorotation, P, and of  torsion angle 
y. The averaged values o f  P and y, and the associated rms 
fluctuations, are given in Table 3 for the unrestrained 
M D  trajectory that lead to the J-coupling restraints (the 
'experimental '  values), for the F I N G A R  refinement, for 
standard refinement, and for time-averaged refinement. 
As is seen, F I N G A R  refinement leads to a much better 
agreement in rms angle fluctuations than either of  the 
MD-based refinement methods. In addition, only FIN-  
G A R  is capable of  generating an averaged value of  1' in 
reasonable agreement with the experimental one. Finally, 
the averaged value of  the potential energy using FIN-  
G A R  is at least 15 kcal/mol lower than that obtained 
with either MD-based refinement method. The weighted 
solution produced by F I N G A R  shows no J-coupling 

restraint violations. In contrast, both o f  the MD-based 
methods yielded residual restraint violations. 

It is worth noting that the FINGAR-der ived  average 
structure reproduces the appropriate value of  the Z-tor- 
sion connecting the sugar to the base, despite the fact that 
no restraints were applied to this linkage. In fact, this is 
to be expected, given the fact that the calculated potential 
energies used in the F I N G A R  refinement are identical to 
those used in the M D  simulation from which the experi- 
mental restraints were derived. In a situation where no 
restraint data are used, one expects the force field itself to 
dictate conformation preferences, unless the restraints are 
artificially coloring the M D  trajectory. Referring to Table 
3, it is seen that the averaged value of  Z is properly repro- 
duced with all refinement methods. However, the afore- 
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TABLE 3 
R E F I N E M E N T  OF ADENOSINE 

Method Restraint violation <Epot> <P>" <7>b <%>c 

rms average 

F ING A R d 0.00 0.00 -4.87 141.6 (28.8) 99.7 (56.6) -11.9 (20.2) 
Standard MD ' 0.33 0.26 10.53 191.1 (11.1) 60.9 (8.1) -9.4 (15.5) 
Time-averaged MD ' 0.48 0.31 40.22 139.2 (35.0) 76.6 (96.3) -11.3 (50.0) 
(Unrestrained) f 2.13 138.5 (28.4) 93.5 (55.3) -11.9 (17.8) 

Energies are in kcal/mol. Angles are in ~ All simulations used the same set of  5 vicinal 3j-coupling values derived from an unrestrained MD run. 
Violations are J-coupling violations and are unitless. Values in parentheses are rms fluctuations. 

The phase angle of  pseudorotation, which is related to the conformation of  the furanose ring (Altona and Sundaralingam, 1972), which is in 
turn related to the torsion angles described by Jm'm'l, Jm, tH3, and JH3'H4', 

b Torsion angle ~C3'-C4'-C5'-O5'), which is related to J-couplings J~4,Hs,, and JHa'Hs'2. 
Torsion angle %(O4'-C1'-N9-C8). 

a The F I NG A R simulation was run with a population of 1000 members for 500 generations. The results listed are for the most-fit member of the 
final population. 

e The standard and time-averaged MD simulations were run for 3 ns with 4-kcal/mol restraint weights. 
r The unrestrained simulation that served as the 'experimental' data from which the J-coupling restraints used in the refinements were derived. 

mentioned tendency of time-averaged refinement to exag- 
gerate atomic motion, clearly results in anomalously large 
motion about this bond. The other refinement approaches 
predict motion about this bond that agrees with the unre- 
strained trajectory. 

The superiority of FINGAR to either MD-based re- 
finement method is dramatically illustrated in Fig. 8. 
There, the rms atomic fluctuations about the mean posi- 
tion are shown for the unrestrained/experimental simula- 
tion (thick solid line), for standard MD refinement (short 
dashed line), for time-averaged MD refinement (long 
dashed line), and for FINGAR refinement (thin solid 
line). FINGAR refinement leads to a solution which is in 
excellent agreement with experiment, and which is su- 
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Fig. 8. Rms fluctuations (A) about mean atomic position for heavy 
atoms of adenosine. The rms fluctuations calculated using standard 
MD refinemcnt (short dashed line), time-averaged MD refinement 
(long dashed line), and FINGAR refinement (thin solid line) are com- 
pared with the true fluctuations from the unrestrained MD trajectory 
(heavy solid line). The MD-dcrived rms fluctuations arc from simula- 
tions using modest restraint weights (Krest=i,t = 4.0 kcal/moD and the 
same restraint target values as those used for the FINGAR run. 

perior to either of the MD-based techniques. Once again, 
as with FK506, we see that standard refinement under- 
estimates the rms fluctuations, while time-averaged refine- 
ment overestimates them. It is worth noting that while the 
standard refinement fluctuations curve is in somewhat 
better agreement with experiment than the time-averaged 
fluctuations curve, the averaged conformation from stan- 
dard refinement is in relatively poor agreement with ex- 
periment (Table 1). The FINGAR results are in good 
agreement by both sets of criteria. 

How do errors affect the FINGAR refinement? 
The above-presented studies demonstrate the power of 

FINGAR for refinement against error-free data, and 
against basis sets that contain the necessary structures. 
Important related questions concern how well the method 
works when these conditions are not met. That is, how 
are the FINGAR-refined results affected both by the 
errors associated with data collected in actual NMR 
experiments and by the absence of important conforma- 
tions in the basis set? 

To test the effects of errors in NMR-derived restraint 
distances, we ran a series of FINGAR FK506 refinement 
simulations where a flat region was associated with the 
target distance. That is, the exact restraint in Eq. 7 was 
replaced by the function (Eq. 14): 

Ebond = NBA~SIS ' 

"Kb ((r(n)) - rNMR (n),)2 

for (r(n)) < rNM R (n), 

0 for rNMR (n). < (r(n)) < rNM R (n)u  

K b ((r(n)) - rNMR (n)u)2 

for rNM R (n). < (r(n)) 

(14) 
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with 

and 

rsMR(n), = rNMR(n ) -- F(rNMR(n)) (15a) 

rNMR(n)u = rNMR(n ) + F(rNMR(n)) (15b) 

where F(rNMR(n)) is the 'error '  associated with restraint n. 
The flat region is typically used in refinement calculations 
to account for uncertainties in the experimental target 
distance. A series o f  F I N G A R  simulations have been run. 
In each, F(rNMR(n)) is fixed at a different value between 0 
and 30, where g is the rms fluctuation in the associated 
target distance rNMR(n ) in the unrestrained M D  trajectory 
from which the target distance was derived. In total, 31 
F I N G A R  simulations, corresponding to 0.1o intervals 
between 0 and 30, have been performed. Other F I N G A R  
simulation parameters were as described above. 

For each F I N G A R  simulation, the averaged structure 
and rms atomic fluctuations about the averaged structure 
have been calculated. The averaged structures, the rms 
atomic fluctuations, and <Epot> vary systematically with 
F, as shown in Fig. 9. Encouragingly, all three quantities 
vary in the expected manner as F increases and the infor- 
mation content of  the restraints decreases. For example, 
<Epot> decreases as F increases, until F = 1.40, after which 
point it levels off  to about 36 kcal/mol (dashed curve). 
One expects that the averaged energy will diminish as the 
restraints are loosened, since restraints typically bias the 
system to different (higher calculated energy) minima 
than would be chosen by the force field itself. That is, 
restraints are only necessary because the force field or 
model itself is imperfect. By the time F--  30 is reached, 
the restraints basically impart no information to the re- 
finement. This can be seen by performing a F I N G A R  
refinement where Kbond is set to zero, so that the refined 
ensemble depends only on the potential energies of  the 
basis sets. The results from this refinement (not shown) 
are identical to those for the F = 3o refinement. Of  course, 
the value o f  F at which the restraints no long impart 
information to the refinement is case-dependent, and will 
vary with how well the potential energies assigned to the 
individual basis-set members agree with the experimental 
ensemble implicit in the restraints themselves. The fact 
that this occurs at a relatively low multiple o f  cr for this 
system reflects the fact that the 'experimental '  restraints 
were derived from a M D  simulation that used the same 
potential energy force field as that used to calculate the 
individual energies o f  the basis sets. 

A parameter more sensitive to the quality of  the re- 
fined results is the rms of  atomic fluctuations about the 
mean position. As noted above, the F I N G A R  approach 
produces atomic fluctuations in much better agreement 
with the experimental data than either standard refine- 
ment or time-averaged refinement. In Fig. 9, RMSXX,  
the rms difference between the rms atomic fluctuations 

for FINGAR-ref ined results and those for the experimen- 
tal data: 

R M S X X  = ~ ((rmSr~fm~d-- rmSexp) 2 / N) 1/2 (16) 
heavy atoms 

is plotted versus F (thick solid curve). As can be seen, 
R M S X X  steadily increases with F until a plateau at 
around F =  2.3o is reached. The implications o f  this plot 
are twofold: firstly, that the restraints are necessary to 
properly reproduce the experimental data - that is, the 
good fit between experiment and refinement is not  simply 
due to the self-consistent nature o f  this study. Secondly, 
that the refinement process is not  introducing artifacts as 
the restraints become tighter. As F deceases, R M S X X  
also decreases. This is in contrast to both the standard 
and time-averaged refinement, where very tight restraints 
can result in artifacts in the refined parameters. Two 
additional notes on the R M S X X  plot are necessary. First- 
ly, the modest jaggedness of  the curve between F = 0 and 
F = 2.2o reflects the fact that while the G A  in F I N G A R  
is quite an efficient optimizer, it is still possible to obtain 
a solution which is highly optimized, near the global 
minimum, and perfectly acceptable, but which is not  itself 
the global minimum. It is likely that we are obtaining 
such near-global-minimum solutions in our F I N G A R  
runs, which explains the jaggedness. Secondly, large fluc- 
tuations appear in the R M S X X  curve beyond F = 2.2o. 
These do not reflect inadequacies in the refinement, but 
rather the fact that for such large values o f  F, there are 
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Fig. 9. Weighted average properties of the best GA solution for the 
FK506 FINGAR refinement as a function of the flat region error 
estimate associated with each of the restraints. The flat region is of 
width 2F, centered on the true restraint value (rNM R (n)+ F). The value 
of F is given in units of o, the rms fluctuation in rNMR (n) in the unre- 
strained MD run from which the target distances were derived. Thin 
solid curve: rms difference in atomic position for the heavy atoms of 
the weighted average structure from refinement versus the true average 
structure. The rms is calculated over all heavy atoms after best-fit 
superposition; thick solid curve: RMSXX, the rms difference between 
the mean-squared atomic motions of all heavy atoms about the 
refined averaged structure and the true rms motion of their counter- 
parts; thin dashed line: the weighted average value of Epot. 
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Fig. 10. (a) Lower spectrum: the true weight vector for the 50-basis-set/50-restraint 'exact-fit' simulation where the weight of the basis set making 
the sixth-largest contribution to the true solution (number 18; w(i)= 0.049) was forced to remain at zero for members of the population during 
refinement. Upper spectrum: the difference in weight between the true vector and the fitted vector as a function of basis set for this simulation 
(fit true). (b) The true and (fit true) curves for a 50-basis-set/50-restraint 'exact-fit' simulation where the weight of the basis set making the seventh- 
largest contribution to the true solution (number 30; w(i)= 0.023) was forced to remain at zero for members of the population during refinement. 
The simulations represented by (a) and (b) are identical to that in Fig. la, except that during refinement one fitted basis-set weight was forced 
to zero. Results are for the most-fit member of a population of 1000 members after 500 generations. The restraint set consisted of distances 
randomly assigned on the interval [2.5,5.5] A, 

two solutions which give nearly identical values of  the 
fitness function (the same values o f  <Epot> and no re- 
straint violations), but which result in quite different 
atomic fluctuations. The solution that is obtained will 
depend in large part on the random number series used 
for the simulation. More generally, because of  differences 
in the refined solution that can arise using different ran- 
dom number seeds, in practice it would generally be a 
good idea to run a F I N G A R  simulation more than once 
to assure that the G A  optimizer has properly converged. 

Also plotted in Fig. 9 is the rms difference in atomic 
positions between the averaged conformation from each 
refinement and the experimental average (thin solid 
curve). As seen for RMSXX,  the difference between the 
refined and experimental values increases (agreement 
becomes poorer) as the information content o f  the re- 
straints is reduced. The same comments about the modest 
jaggedness and fluctuations at large values o f  F made for 
R M S X X  apply for this curve as well. Note  that a direct 
comparison can be made between this curve and Fig. 6 of  
a previous study of  FK506 using standard and time-aver- 
aged refinement. In that study, it was shown that due to 
refinement biases in both of  these refinement methods, 
agreement between the averaged structures improves (rms 
difference decreases) as F increases. That is, as the infor- 
mation content of  the restraint goes up, so do biases to 
the averaged structure. By contrast, with F I N G A R ,  the 
averaged structure is closer to the true average as the 
information content increases. The F I N G A R  behavior is, 
o f  course, more desirable. 

In addition to errors in target restraint distances, it is 

possible within the F I N G A R  method to encounter errors 
due to inadequacies in the basis set. It would be quite 
difficult to characterize these in the general case, but it is 
instructive to consider how refinement results are affected 
when an important  basis-set structure is missing. This is 
best determined by performing a couple o f  additional 
'exact '  test simulations. The 50-basis-set/50-restraints 
simulation presented in Fig. l a was rerun, but with the 
weight o f  a single preselected basis set fixed at 0.0 in all 
members o f  the population during refinement. Since in 
the exact-fit runs the restraints are calculated directly 
from the basis sets, we can determine how the entire fit is 
affected when a basis set that contributed to the target 
restraints (which is not replicated by other members o f  
the basis set) is missing. Figure 10 presents the results o f  
two simulations: one where the weight of  the basis set 
that contributed the 6th-largest amount  to the restraints 
(number 18; w(i)=0.049) is forced to zero in the refined 
population; and one where the weight of  the basis set that 
contributed the 7th-largest amount  to the restraints (num- 
ber 30; w(i)= 0.023) is forced to zero. The weight zeroed 
out in the former simulation is the smallest o f  the six 
large weights that dominate the weight profile for this 
run. This is representative o f  a simulation where a critical 
basis set is missing. The weight zeroed out in the latter 
simulation is still o f  moderate importance, but is signifi- 
cantly smaller. As can be seen by comparison to Fig. 1 a, 
removal of  only one important  basis set has appreciable 
affects on the refined weights o f  the entire population. 
When the missing basis set is of  lesser importance, the 
overall affect on the refined weight vector is considerably 
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decreased, but the effect is still spread throughout the 
population. Clearly, the take-home message here is that 
one should be as careful as possible to ensure that the 
basis set includes representatives of all conformers that 
could potentially have contributed to the measured NMR 
data. 

Discussion 

A new genetic-algorithm-based method, FINGAR, for 
refining molecular structures from NMR-derived distance 
and angular restraints is presented and applied to several 
model systems, including two systems previously exam- 
ined in detail using standard MD and time-averaged MD 
refinement techniques. The results clearly demonstrate 
that FINGAR is a superior method to these for NMR 
refinement. Compared to MD-based refinement methods, 
FINGAR is capable of yielding a weighted ensemble of 
structures which has smaller restraint violations and a 
lower averaged energy, and with associated rms atomic 
fluctuations in much better accord with experiment. In 
addition, the properties of structures refined using FIN- 
GAR edge closer to experiment as the errors associated 
with the restraints decrease, as is desired in a refinement 
method. With MD-based methods, biases due to includ- 
ing the restraints during MD can cause the error to in- 
crease as the associated errors decrease. 

Aside from the obvious advantages in the refined en- 
semble, F INGAR sports additional advantages over 
other techniques in use. Firstly, FINGAR yields a set of 
weights that define the ensemble fitting the NMR data. 
The weights provide a straightforward map of the most 
important conformations, and those basis-set structures 
with the largest weights can be used in further modeling 
studies. In the most-commonly used NMR refinement 
methods, one can only generate an ensemble of confor- 
mations or an average conformation. While such repre- 
sentations are instructive, they are not nearly as readily 
usable for most applications. 

Another advantage of FINGAR is that the most time- 
consuming part of the simulation - generation of the 
basis set - is only carried out once. After the basis set is 
generated, one needs only to evaluate the values of the 
restraints and potential energy of each structure (roughly 
100 energy function evaluations for the simulations here) 
to run FINGAR with any restraint set. FINGAR itself, 
because the fitness function is calculated from these pre- 
determined quantities, is relatively fast. This is quite ad- 
vantageous as one will frequently modify the restraint set 
(remove erroneous restraints, change restraint bounds) 
and rerun the refinement, particularly in the early stages 
of structure refinement. By contrast, traditional DG and 
MD-based refinement methods can be quite time-intensive 
to rerun with a new restraint set. The time saving is also 
enjoyed when one needs to rerun to try different refine- 

ment conditions, either in terms of parameters controlling 
the GA, or if one wishes to change the relative weights of 
the terms in the fitness function. Although we have chosen 
to perform our refinements in the distance domain, the 
FINGAR method would be equally applicable to refine- 
ments directly against NOE intensities. In such a case, the 
time savings would be even more dramatic, because the 
calculation of these intensities is quite CPU-intensive 
(Borgias and James, 1988; Yip and Case, 1989; Nilges et 
al., 1991), and, again, these intensities would only need to 
be calculated once for each member of the basis set be- 
fore running the actual GA fitting. Similarly, one can 
envision straightforward extension of the method to allow 
a weighted fit of basis structures to crystallographic data. 

While other methods have been described that attempt 
to derive a weighted fit from an ensemble of basis sets, 
most have been based on local optimization methods or 
ad hoc reduction in the number of basis sets fit. As a re- 
sult, they are limited in their ability to determine weights 
for the number of basis sets that may be required to 
generate an optimal fit (or when one cannot a priori 
define a relatively small basis set). A recent study (Ulya- 
nov et al., 1995) described an alternate global optimiza- 
tion method which is applicable to many basis sets. This 
method appears to be considerably more robust than 
traditional local optimization methods, although not 
enough data were presented to assess the relative strength 
of the optimization procedure compared to a GA. 

It should be stressed that here FINGAR has been 
tested for small-molecule refinement in cases where one is 
able to generate a decent basis set using straightforward 
MD sampling, followed by hierarchical clustering. Gener- 
ating an appropriate basis set is the trickiest part of the 
method, since there is no guarantee that any particular 
simulation will adequately sample conformational space. 
The best general prescription may be to first run a num- 
ber of distance-geometry simulations to generate an en- 
semble of structures that samples conformational space 
while fulfilling the restraints. Subsequently, each of these 
can be used as a starting point for a modest amount of 
molecular dynamics at 300 K, during which snapshot 
structures are stored for subsequent clustering and build- 
ing of the basis set. Unrestrained MD simulations might 
be complemented by very low restraint weight time-aver- 
aged MD simulations, as was done here, to further im- 
prove sampling of conformational space. The need for 
restrained refinement will depend on the quality of the 
force field and our ability to sample conformational space 
using DG, MD, or whatever sampling technique is chosen. 
For small molecules with a limited number of rotatable 
torsions, one could conceivably generate starting points 
for the MD simulations from a rigid-body search along 
all these torsions. Sampling to produce a basis set can 
also be performed using other techniques. A recent study 
described an interesting minimization-based method for 
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generating a potential basis set of  structures consistent 
with distance restraints (Bruschweiler et al., 1991). Unfor- 
tunately, the structures generated will then fail to reflect 
the natural molecular distortions appropriate for the 
temperature at which the N M R  experiment was run. MD 
does not have this problem. In any case, sampling is no 
more an issue for F I N G A R  than for any other N M R  
refinement method. 

It is also worth noting that while the clustering method 
used here worked quite well for the small molecules being 
considered, any method in which one is able to tune the 
number of  resulting clusters would be acceptable. For the 
work here, it was sufficient to use the distance-matrix 
error, applied to all heavy atoms, as our clustering cri- 
terion. But calculating the distance-matrix error is the 
most CPU-intensive portion of the clustering procedure, 
and the time required for this calculation increases with 
the square of  the number of  atoms involved in the clus- 
tering. For larger molecules, we would need to either 
restrict the comparison to a smaller subset of the atoms 
(e.g. protein backbone atoms), or else use an alternate 
clustering criterion such as the rms difference. In the end, 
the key to the success of F I N G A R  is not the particular 
set of  procedures used to sample conformational space 
and to generate clusters, but simply that such methods 
are successfully employed to generate an acceptable basis 
set. 

We chose to use a clustering diameter that resulted in 
approximately 100 basis sets, because our work with the 
'exact-test' simulations indicated F I N G A R  was capable 
of generating a solution in excellent accord with the true 
solution when the number of  basis sets (fitted weight 
variables) was in this range - even when the number of  
restraints was smaller than the number of  basis structures. 
However, even for larger basis sets, F I N G A R  is able to 
generate a good fit, provided sufficient experimental 
restraint data are available. Therefore, there should be no 
problem fitting to a larger basis set in cases where it 
appears desirable or necessary. Use of a larger basis set 
is most likely to become an issue when F I N G A R  is ap- 
plied to bigger systems, such as proteins. In creating a 
larger basis set, one should try to ensure that not too 
much redundancy is being included in the set. Although 
clustering should generate a basis set of  conformers that 
span conformational space, it is not unusual to have pairs 
of conformers in the basis set that are rather similar to 
one another. This occurs because clustering methods 
frequently must attempt to create boundaries in regions 
where no obvious boundaries exist (e.g. for an evenly 
distributed set of  data). In such a case, two points close 
to one another can be assigned to different clusters if the 
cluster boundary runs between them. Redundancy in the 
basis set does not present a problem in running FINGAR,  
in finding a solution that best fulfills the NMR-derived 
criteria, or in calculating the averaged conformation or 

rms atomic motions. But it may somewhat blur the inter- 
pretation of the weight data. 

Note that the number of restraints obtained in an 
experiment is not necessarily an accurate measure of how 
much independent data one has. Restraints, particularly 
those which are short-range, can sometimes impart little 
independent information to the refinement process. This 
occurs either when a restraint defines a distance which is 
never violated because of steric or other large energetic 
preferences, or when the distance defined by the restraint 
is already selected by other restraints in the list. For the 
'exact-test' runs here, the restraints were independent, 
owing to the random method by which distances in the 
basis sets were defined. But in real experiments, one must 
be more careful in deciding how many basis sets are rea- 
sonably justifiable relative to the amount of information 
in the restraint set. 

More generally, the results here provide strong evi- 
dence that F I N G A R  will be broadly applicable to small- 
molecule structure refinement. But it is less conclusive 
how well the method will work for large systems such as 
proteins. Again, this comes down to a question of whether 
an appropriate basis set can be generated. The method 
will certainly work in principle for proteins every bit as 
well as for small molecules: the GA fitting process has 
been demonstrated herein to be robust even for large 
numbers of  variables. However, it will likely be challeng- 
ing to generate a tractable set of  basis structures, given 
the large number of  independent variables (and hence 
conformations) potentially available. The number of ex- 
perimental restraints for a high-resolution protein N M R  
structure is typically at least an order of magnitude larger 
than for a small molecule. Therefore, we can reasonably 
expect to increase the number of refined variables (basis 
sets) by a similar factor over the number used for a small 
molecule. Based on the work here, that might mean a 
basis set of  a thousand or more structures. Whether a 
basis set of this size is sufficient to acceptably characterize 
the conformational space normally accessible to a protein 
remains to be tested. One can always further increase the 
basis set, but then approaches a situation where the re- 
fined results will be increasingly dependent on the force 
field itself. Note that this problem is identical to that 
encountered with any type of N M R  refinement. The 
number of independent degrees of  freedom for a protein 
is huge, and the number of independent NMR-derived 
restraints rarely overdetermines the problem. The differ- 
ence is that in F I N G A R  one makes an explicit decision 
as to how many refined variables (basis sets) will be used, 
while in other methods one is generally limited to refining 
all the degrees of  freedom in the system. That is, FIN- 
GAR calls explicit attention to the potential undetermina- 
tion of the problem, while with other N M R  refinement 
methods inadequacies in the the observables/variables 
ratio can be buried in the protocol. 
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Although there are minor issues to be dealt with re- 
garding generation of the basis set, one thing is clear: 
where applicable, the GA-based FINGAR method pres- 
ents a marked improvement over previous refinement 
techniques. FINGAR incorporates the ensemble averag- 
ing advantage of time-averaged MD refinement over 
standard (DG or MD) refinement. FINGAR also corrects 
several problems with time-averaged (and standard) re- 
finement: (i) the ensemble is formed from structures with 
no (or very low) restraints applied, so geometric distor- 
tions are avoided; (ii) the rms atomic displacements pre- 
dicted are in very good accord with experiment; (iii) large 
barrier heights and slow interconversion rates do not 
present a problem as long as the basis set is properly 
formed; and (iv) interpretation and utilization of the 
results is straightforward, since the result is a weighted 
ensemble of discrete structures. Furthermore, FINGAR 
can simultaneously fit the entire set of basis-set weights, 
offering a considerable advantage over previous attempts 
at assigning weights to discrete structures. In summary, 
there appear to be many reasons to suggest that the FIN- 
GAR method should be employed in future NMR-based 
refinements. 
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